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It is shown that the Yang-Mills  theory of  gravity proposed by us results in a 
Yukawa-like force as supposed experimentally by E. Fischbach et al. 

1. INTRODUCTION 

Recently we proposed a Yang-Mills gauge theory for gravity on the 
basis of Minkowski space-time (Dehnen and Ghaboussi, 1985). The reasons 
for doing this are the difficulties of usual gravity with respect to quantization 
and unification with the remaining physical interactions. In this connection 
we have emphasized that in any case quantum or microscopic physics 
possesses priority and follows directly from very few general first principles, 
whereas all macroscopic physics, including Einstein's metric theory of 
gravity, must be deduced from quantum physics in a certain classical limit. 

Following the successful line of gauging of compact and unitary internal 
symmetry groups for describing the electroweak and strong interactions, 
we have chosen as gauge group for the Yang-Mills theory of microscopic 
gravity the simplest possibility beyond the U(1) phase-gauge group, namely 
the U(2) transformation group of the 2-spinors for massless fermions; the 
mass as a classical concept must be introduced later dynamically by spon- 
taneous symmetry-breaking. Accordingly, in our theory the fermions possess 
priority and as fundamental fermions one can consider even "preons"  or 
"urs," so that a certain universality of gravity is guaranteed. 

Taking additionally into account the usual principle of minimal coup- 
ling, we obtained a microscopic Lorentz-invariant Yang-Mills theory, which 
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leads in its classical macrosc9pic limit to "Einstein's metric theory of gravity 
at least in its linearized version: The pseudo-Riemannian metric is built up 
by the 4-vector gauge potentials with respect to the SU(2)•  U(1) algebra, 
which we use in its 4 • 4 representation (Dehnen and Ghaboussi, 1986). In 
this sense our theory represents in its classical limit a bimetric tetrad 
formulation of gravitation between (massless) fermionic matter. The interac- 
tion of gravity with the other bosonic fields may be included only within a 
grand unification of all interactions using higher U(N) symmetry groups 
acting on a higher dimensional spin-isospin space. 

Although our theory in its classical limit results in Einstein's theory, 
on the microscopic level there exist other structures also (Ghaboussi et al., 
1987). In this connection it is of interest that recently Fischbach et aL (1986) 
found that a reanalysis of the E6tv6s experiment gives rise to an additional 
Yukawa-like (repulsive) potential besides the usual (attractive) Newtonian 
potential for the static gravitational interaction. A similar result was found 
by Holding and Tuck (1984), using geophysical methods. According to this, 
the effective gravitational potential should have the form 

V(r)~l-( l+~e -~/~) (1) 
r 

[c~ = -(7.2 + 3.6)x 10 -3, A = 200 + 50 m], from which the force follows 

1 + o ~ ( 1 +  l)e-r /A (2) 

It is to be supposed that such a Yukawa-like force, which does not exist in 
Newton's or even Einstein's theory, is a macroscopic relic of microscopic 
gravity. In this respect the result of Fischbach et al. is very important and 
should be tested as soon as possible. 

In this context the question arises of whether--apart  from other inter- 
pretations of this effect (see, e.g., Gibbons and Whiting, 1981)--our theory 
of microscopic gravity results in such a Yukawa-like force, and what the 
predictions of our theory are with respect to experiments. However, because 
our theory is developed in the first step for massless fermions, one can 
expect on this level only a qualitative answer. 

2. THE MICROSCOPIC THEORY 

We repeat so far as is necessary the results of Dehnen and Ghaboussi 
(1985). The 2-spinor transformation group U(2) is considered as an internal 
symmetry group. Then, using the 4-spinor calculus and consequently the 
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4x 4 representation of the generators z a of the group SU(2)x  U(1) 

Ta=--I(O-a2'O ; )  (3) 

(o-o is the unit matrix and o -1, o -2, o -3 are the Pauli matrices), we obtain the 
covariant derivative of the spinor ~O: 

D~qJ = (0~ + ig%.az")~ (4) 

(g is the gauge-coupling constant) with the property 

[D~, y~] = O, y ( " y ' )  = r/"~ (5) 

(y~ are generalized Dirac matrices, r/~" = diag(-1,  1, 1, 1) is the Minkowski 
metric). With respect to the spinor transformation as internal group the 
spinor 0 is a Lorentz scalar; the adjoint spinor q~ is given by 4~ = O*s r, where 
the matrix ~" is a Lorentz scalar defined by (~'y")* = ~'y~ and [D. ,  ,~] = 0 (~" 
and Y" are functions of x~); a special representation of ( is ~" = y ~ 

The gauge-covariant field strengths are 
bc F~a  = W ~al. - W ~.l~ - ge . ~o .b~o~ (6) 

[e.  bc are structure constants of the group SU(2)] satisfying the Bianchi 
identities: 

bc 
F~l~l~]+gea Fbf~.tox] c = 0 (7) 

Finally, the field equations following from the minimal coupled gauge- 
invariant Lagrange density take the explicit form 

y"(O~ + igw.~r~)O = 0 (8) 
r ~ p a  - -  a b c r ~ t t u  . r  * g e  r b  W~. =21rkg~{7 ~, ra}~b (9) 

with the "charge" conservation laws: 

L - 4 ~ k  e r b  w,~J =0 (10) 

wherein the matter currents are defined by 

=~g6{Y, z"}O (lOa) j va  1 - -  v 

Here k is a second coupling constant between the two gauge-invariant parts 
of the Lagrange density and comes out to be 2 h G  ( G  is the Newtonian 
gravitational constant), whereas the coupling constant g has the dimension 
of a reciprocal length and remains undetermined by the classical Einstein 
limit; it can be determined only experimentally by microscopic effects. The 
meaning of the quantity hg is that of an elementary gravitational charge, 
i.e., energy. 
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The gauge-invariant canonical energy momentum tensor belonging to 
(8) and (9) is given by 

v 1 -  -- v v T.-~th[qJy D~.O-(D~O)y O] 
h 

with the energy-momentum conservation laws 
v O~T~.=O ( l l a )  

Neglecting surface integrals over the matter field (qJ field) with respect to 
the conservation laws (10), one finds from (10a) for the change of the 
4-momentum of the 0 field with time, using (7) and (9), 

Oof T~ d3x=f ..a 3 F...hj d x (12) 

where T~(0)  is the gauge-invariant canonical energy-momentum tensor of 
the matter field given by the bracket on the right-hand side of (11). 

Considering an insular and static distribution of matter, we find for 
the 4-force on the right-hand side of (12) 

K.=F.ooq ~ q~ Ij~ (13) 

Of course, in case of massless fermions an exact static distribution of matter 
is impossible. However, it is to be expected that the structure of  the force 
in (12) and that of the Yang-Mills equation (9) will not be changed for 
massive fermions; only the current of the matter field will go over from a 
lightlike to a timelike one. Then for our question the 3-force Km (/~ = m = 
1, 2,3) and consequently the field strengths F.,o. according to (13) are 
significant and must be investigated in detail. 

3. THE FIELD STRENGTH 

For investigation of the static field strengths FmoIa) (we set the group-set 
index in a parentheses for clarity) we have to solve the bosonic vacuum 
field equations following from (9), 

(a)(b)(c)  r n O  OmFm~ r(b)~On(c) = 0 (14) 

for the static, spherically symmetric case. 2 In view of the tetrad formulation 
of the classical Einstein limit, the gauge potentials must satisfy the always 
possible normalization condition (lel~l] << 1 in a weak field approximation): 

= ( 1 5 )  

2 L a t i n  c o o r d i n a t e  i n d i c e s  r u n  f r o m  1 t o  3 o n l y .  
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According to this, the three SU(2) gauge potentials are spacelike and the 
U(1) gauge potential is timelike upon choosing as group-space metric the 
Minkowski matrix rlab; this choice is essential for reaching the pseudo- 
Riemannian structure of the metric in the classical limit. We satisfy the 
condition (15) for the following by the ansatz: 

~o~) = 6~a) + A ~ )  (16) 

(b) and A~a) are connected with one another. Then we get from so that e(a) 
(14) with respect to (6) for the U(1) part (a =0) 

AO(O ) 1 1 x m 
. . . . .  (17) r' Frno(o) r 2 r 

i.e., the usual Newtonian potential and field strength. 
For the SU(2) part (a = j =  1,2,3) we obtain from (6) and (16) the 

field strengths 

no a(.> (18) F,.o~) = Aoo)Fr. -s~O)(m)(.)~o 

where we have restricted ourselves to the linearized form with regard to 
A~(a). Expression (18) shows that the ansatz (16) is reduced for A.(o~ = 0 
to a pure gauge field (Fmo(a) -= 0) at least with respect to the static potentials 
Ao(o), which is necessary for the interpretation of Ao(~) as new gauge 
potentials instead of Wo(~). 

Insertion of (18) into (14) yields the following coupled differential 
equations for the SU(2) gauge potentials: 

A~m ~)l" - 2ge(J)(~)(")A~,)lm - 2g2A ~ = 0 (19) 

with the asymptotically vanishing solution 

A ~ ~ 0j[(1/r) exp( - x/2gr)] (20) 

as the "most spherically symmetric" one. Obviously the SU(2) part leads 
to Yukawa-like potentials with a range given by the reciprocal gauge 
coupling constant g-~. 

With respect to (13), the Yukawa-like "SU(2) forces" couple to the 
"changes" qO(/) depending, in view of (10a) and (13), on the spin orientation 
of matter. Combining (17) and (20), we find with the use of (18) for the 
3-force between two elementary point sources with spins in the direction 
of their connecting line according to (13): 

K ~ = - 2 h  g G ~5+fl ~ + ~ r r  + exp(-x/2gr)  (21) 

with fl = +1 for parallel and/3 = - 1  for antiparallel spins. This result has 
nearly the same structure as the experimentally supposed expression (2), 
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whereby the coupling constant g now can be determined experimentally 
by the value of A. Accordingly, the fundamental  energy quantity hg = hx/2A 
would be of  the order of  10 -9 eV (cf. also Fischbach et al., 1986). We note 
that the Yukawa potentials (20) and the Yukawa part  of  the force (21) do 
not appear  in the static classical Einstein limit of  our theory. 

4. F I N A L  R E M A R K  

According to  (21), we find a superposition of Coulomb-like and 
Yukawa-like static forces within our microscopic gauge theory of gravity 
in qualitative agreement with the result of  Fischbach et aL Because the 
effects of  the Yukawa potential also depend on the polarization of the test 
matter, a test of  the result of  Fischbach et al. should be performed with 
spin-polarized bodies. However, in order to avoid perturbations by the 
magnetic field of  the earth, it may be necessary to use a superconducting 
shield for the experiments. 
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